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bstract

Rigorous simulations of excited-state nonadiabatic quantum dynamics in polyatomic chromophores are particularly challenging since they
equire solving the multichannel time-dependent Schrödinger equation describing nuclear wavepackets evolving on electronically coupled poten-
ial energy surfaces. This paper presents an overview of the matching-pursuit/split-operator-Fourier-transform (MP/SOFT) method for simulations
f nonadiabatic quantum dynamics [X. Chen, V.S. Batista, Matching-pursuit split operator Fourier transform simulations of excited-state nonadi-
batic quantum dynamics in pyrazine. J. Chem. Phys., 125 (2006) Art. No. 124313] and its application to the description of the 11-cis/all-trans
hotoisomerization of the retinyl chromophore in rhodopsin. The underlying nonadiabatic dynamics is described by a 2-state 25-dimensional

ave-packet evolving according to an empirical model Hamiltonian with frequencies and excited-state gradients parameterized to reproduce the
bserved resonance Raman excitations of rhodopsin. The reported results show that the MP/SOFT method is a valuable tool to simulate nonadi-
batic dynamics in polyatomic systems and to assess the validity of mixed quantum-classical approaches as applied to simulations of complex
nonintegrable) quantum dynamics in multidimensional systems.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Understanding ultrafast photoinduced reactions in excited
lectronic states of polyatomic chromophores is a problem com-
on to a wide range of systems in chemistry, biology, physics

nd beyond. Many experimental techniques implementing ultra-
ast time-resolved pump-probe spectroscopy (besides various
ypes of transient absorption experiments) have been developed
o study a variety of ultrafast photoinduced processes, includ-
ng isomerization reactions, excited state intramolecular proton
ransfer, direct dissociation, vibrational energy redistribution
nd electronic internal conversion, among others. The unam-
iguous interpretation of these highly multiplexed pump-probe
xperiments, however, often requires theoretical simulations
ince the signals result from complicated nonadiabatic dynam-

cs involving multiple potential energy surfaces (PESs). This
aper presents an overview of the matching-pursuit/split-
perator-Fourier-transform (MP/SOFT) method for simulations

∗ Corresponding author. Tel.: +1 203 432 6672; fax: +1 203 432 6144.
E-mail address: victor.batista@yale.edu (V.S. Batista).
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f nonadiabatic quantum dynamics [1] and its illustration as
pplied to modeling the ultrafast 11-cis/all-trans photoisomer-
zation of the retinyl chromophore in rhodopsin, described by
he structural diagram of Fig. 1.

The photoisomerization of the retinyl chromophore in
hodopsin constitutes the primary step in the vertebrate vision
rocess [2–9] and has been the subject of extensive experimental
nd theoretical studies. Femtosecond pump-probe spectroscopic
easurements have provided detailed time-resolved information

n the photoisomerization and interconversion dynamics, indi-
ating that the all-trans photoproduct is formed within 200 fs
ith high efficiency (67%) [10–12]. However, due to the com-
lexity of the problem, the complete theoretical description of
he underlying nonadiabatic dynamic has yet to be reported
ith an explicit treatment of the rhodopsin environment. In this
aper, the description of dynamics is based on an approximate
mpirical model Hamiltonian with frequencies and excited-state
radients parameterized to reproduce the observed resonance

aman excitations of rhodopsin.

Most previous theoretical studies were performed long
efore the crystallographic structure of rhodopsin was avail-
ble [13–18]. However, the recently reported X-ray crystal

mailto:victor.batista@yale.edu
dx.doi.org/10.1016/j.jphotochem.2007.05.015
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ig. 1. Structural diagram of the 11-cis/all-trans photoisomerization of the re
(C11–C12) are highlighted in magenta.

tructures of bovine rhodopsin [19–21] have motivated sev-
ral computational studies that focused on the analysis of the
eometry and electronic excitation of the retinyl chromophore
22–26], the underlying molecular rearrangements, and the
echanism of energy storage by 11-cis/all-trans isomeriza-

ion [27–31]. In addition, several studies based on reduced
imensional model systems have investigated the underlying
onadiabatic dynamics associated with the photoisomeriza-
ion of the chromophore [32–37], including studies based on
pproximate mixed quantum-classical techniques applied in
onjunction with an empirical 2-state 2-mode model Hamil-
onian, coupled to a classical bath of 23 vibrational modes of
hodopsin [38,39]. This model Hamiltonian is thus particularly
uited for detailed investigations based on newly developed com-
utational methods since it allows for direct comparisons with
revious studies and recent theoretical work on related systems
40,41]. This paper reports simulations of the photoisomeriza-
ion dynamics treating the 2-state 25-mode model fully quantum

echanically. This includes the two coordinates accounting for
he collective torsion about the C11–C12 bond and its cou-
ling to the delocalized stretching mode of the polyene chain,
volving on 2 electronically coupled potential energy surfaces.
he quantum bath includes 23 vibrational modes with fre-
uencies and excited-state gradients parameterized to reproduce
he experimental resonance Raman excitations of rhodopsin
42].

Numerically exact simulations of excited-state nonadia-
atic quantum dynamics are particularly challenging since they
equire solving the multi-channel time-dependent Schrödinger
quation for the description of nuclear motion on multiple
oupled potential energy surfaces. This problem can be rigor-
usly solved by applying methods for wave-packet propagation
43–55], such as approaches based on the split-operator-Fourier
ransform (SOFT) method [56–58], the Chebyshev expansion
59] and the short iterative Lanczos algorithms [60]. While

igorous, these approaches demand storage space and computa-
ional effort that scale exponentially with the number of coupled
egrees of freedom in the system, limiting their applicability to
olecular systems with very few atoms (e.g., less than three or

p

h
m

chromophore in visual rhodopsin. The C11–C12 bond and the dihedral angle

our atoms). Due to this scalability problem, studies of nonadia-
atic dynamics in polyatomic systems have been usually based
n approximate methods built around semi-classical and mixed
uantum-classical treatments [61–75]. However practical, these
opular mixed quantum-classical approaches rely upon ad hoc
pproximations whose resulting consequences are often diffi-
ult to quantify in applications to complex (i.e., nonintegrable)
ynamics. It is, thus, imperative to develop practical, yet rig-
rous, methods to validate approximate approaches and gain
nsight into the nature of quantum dynamics [1,76–87].

The MP/SOFT method [1,82–87] is a time-dependent propa-
ation scheme for numerically exact simulations of quantum
rocesses. The method is based on the propagation of mul-
idimensional time-dependent wave-packets, represented in

atching-pursuit coherent-state expansions, by analytically
pplying the time-evolution operator as defined by the Trotter
xpansion to second order accuracy. The resulting propagation
cheme thus bypasses the ‘exponential scaling problem’ of the
tandard grid-based SOFT approach [56–58], usually limited by
he capabilities of the fast-Fourier transform FFT algorithm [88].
urthermore, the MP/SOFT method overcomes the ‘truncation
roblem’, natural to propagation schemes where the basis set
s defined a priori, by dynamically adapting the coherent-state
xpansion according to the desired propagation accuracy. When
ompared to alternative time-dependent methods, including the
CTDH method [89,90] and approaches based on coherent-

tate expansions [78,79,91–105], the MP/SOFT method is
sually easier to implement since it has the advantage of avoiding
he need of propagating time-dependent expansion coefficients,
task that would require solving a coupled system of differen-

ial equations. The main drawback of the MP/SOFT method
s that it requires generating a new coherent-state expansion
or each propagation step. However, such a computational task
an be trivially parallelized, overcoming the limitations of
emory/storage bandwidth in terms of readily available com-
utational processing power.
The accuracy and efficiency of the MP/SOFT method

ave already been demonstrated in several applications to
ultidimensional quantum dynamics, including recent studies
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f the excited-state intramolecular proton transfer in 2-(2′-
ydroxyphenyl)-oxazole [87], as modeled by the propagation
f a 35-dimensional wave packet; and the S1/S2 interconver-
ion of pyrazine after S0 → S2 photoexcitation, as modeled
y the propagation of a 24-dimensional wave-packet undergo-
ng nonadiabatic dynamics at the S1/S2 conical intersection of
otential energy surfaces [1]. This paper shows that the same
ethodology can be efficiently implemented to simulate the

onadiabatic dynamics of the retinyl chromophore in rhodopsin,
fter S0 → S1 photoexcitation, by propagating a 25-dimensional
ave-packet evolving according to an empirical 2-state 25-mode
odel Hamiltonian.
The paper is organized as follows. Section 2 describes the

P/SOFT methodology for simulations of nonadiabatic quan-
um dynamics and the 2-state 25-mode model Hamiltonian used
or the description of the 11-cis/all-trans photoisomerization in
hodopsin. Section 3 presents results of calculations of the time-
ependent populations associated with the 11-cis and all-trans
onfigurations and the analysis of the time-dependent wave-
acket as a function of the isomerization coordinate and the
eneralized stretching mode of the chromophore polyene chain.
ection 4 summarizes and concludes.

. Methods

.1. MP/SOFT method

Consider the simulation of nonadiabatic quantum dynamics
ccording to the 2-state model Hamiltonian:

ˆ = p̂2

2m
+ V̂ , (1)

here V̂ = V̂0 + V̂c with V̂0 = V1(x̂)|1〉〈1| + V2(x̂)|2〉〈2| and
ˆc = Vc(x̂)|1〉〈2| + Vc(x̂)|2〉〈1|. Here, x = (θ, xstr,zj) represents
he nuclear coordinates, collectively, including the torsional
oordinate θ; the delocalized stretching mode of the polyene
hain, xstr and the Condon-active vibrational modes zj of
hodopsin, as specified in Section 2.3. The computational task

head involves obtaining the time-dependent wave-packet:

Ψ (x; t)〉 = ϕ1(x; t)|1〉 + ϕ2(x; t)|2〉, (2)

here, ϕ1(x; t) and ϕ2(x; t) are the nuclear wave-packet compo-
ents associated with the diabatic electronic states, |l〉 and |2〉,
s determined by the evolution of the initial states:

1(x; 0) = 0, ϕ2(x; 0) =
N∏
j=1

(
1

π

)1/4

e−x(j)2/2
, (3)

M ≡
(

cos(2Vc(x̂)τ) e−iV̂1(x̂

−i sin(2Vc(x̂)τ) e−i(V̂1(x̂)
ssociated with the S0 and S1 states, respectively. Here, N = 25
s the dimensionality of the system, as defined by the num-
er of nuclear coordinates explicitly considered in the model
amiltonian.

g

[
t
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A simple propagation scheme would require representing the
nitial states ϕ1(x; 0) and ϕ2(x; 0) in a convenient nuclear basis
et and propagating ϕ1(x; t) and ϕ2(x; t) by applying the time-
volution operator, e.g., as defined by the embedded form of the
rotter expansion:

e−iĤ2τ ≈ e−i(p̂2/2m)τ e−iV (x̂)2τ e−i(p̂2/2m)τ

≈ e−i(p̂2/2m)τ e−iV0(x̂)τ e−iVc(x̂)2τ e−iV0(x̂)τ e−i(p̂2/2m)τ . (4)

Working in the basis set of electronic states |l〉 and |2〉, this
an be accomplished according to the following steps:

Step [I]. Apply the free-particle propagator to both wave-
packet components ϕ1(x; t) and ϕ2(x; t) for time τ, as follows:(
ϕ′

1(x; t + τ)

ϕ′′
2(x; t + τ)

)
=
(

e−i(p̂2/2m)τ 0

0 e−i(p̂2/2m)τ

)

×
(
ϕ1(x; t)

ϕ2(x; t)

)
. (5)

Step [II]. Mix the two wave-packet components ϕ′
1(x; t + τ)

and ϕ′
2(x; t + τ):(

ϕ′′
1(x; t + τ)

ϕ′′
2(x; t + τ)

)
= M

(
ϕ′

1(x; t + τ)

ϕ′
2(x; t + τ)

)
, (6)

with

M ≡ L−1

(
e−iE1(x)τ 0

0 e−iE2(x)τ

)
L, (7)

where E1(x) and E2(x) are the eigenvalues of the potential
energy matrix V = V0 + Vc and L is the matrix of column eigen-
vectors in the basis of diabatic states |l〉 and |2〉. The specific
case of interest involves a 2 × 2 Hermitian matrix V. There-
fore, the matrix M can be analytically obtained as described
in Ref. [1]:

−i sin(2Vc(x̂)τ) e−i(V̂1(x̂)+V2(x̂))τ

))τ cos(2Vc(x̂)τ) e−iV̂2(x̂)2τ

)
. (8)

tep [III]. Propagate ϕ′′
1(x; t + τ) and ϕ′′

2(x; t + τ) for time τ,
ccording to the free-particle propagator by applying the kinetic
nergy part of the Trotter expansion:

ϕ1(x; t + 2τ)

ϕ2(x; t + 2τ)

)
=
(

e−i(p̂2/2m)τ 0

0 e−i(p̂2/2m)τ

)

×
(
ϕ′′

1(x; t + τ)

ϕ′′
2(x; t + τ)

)
. (9)

n practice, Step [III] is combined with Step [I] of the next propa-

ation time-slice for all but the last propagation time-increment.

In the usual grid-based implementation of this approach, Step
I] requires Fourier transforming states ϕl(x; t) to the momen-
um representation, multiplying the transform-states by the free
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article propagator e−i(p2/2m)τ , and then inverse-Fourier trans-
orming the product, back to the coordinate representation.
his standard grid-based procedure would be computationally

ntractable for the present application since it would be limited
y the exponential scaling of the fast-Fourier transform FFT
lgorithm [88]. Such computational difficulties are by-passed
n the MP/SOFT approach by representing states ϕl(x; t) as
atching-pursuit coherent-state expansions (see Section 2.2):

l(x; t) ≈
N∑
j=1

c
(l)
j 〈x|χj〉, (10)

here 〈x|�j) are N-dimensional coherent-states:

x|χj〉 ≡
N∏
k=1

Aj(k) exp

(
−γj(k)

2
(x(k) − xj(k))2

+ipj(k)(x(k) − xj(k))
)
, (11)

ith normalization factors Aj(k) and complex-valued param-
ters γ j(k), xj(k) and pj(k) selected, as described in Section

.2. The expansion coefficients c(l)
j , introduced by Eq. (10),

re defined according to the matching pursuit algorithm [106],
s follows: c(l)

j ≡ 〈χ1|ϕl〉 and c(l)
j ≡ 〈χj|ϕl〉 −∑j−1

k=1c
(l)
k 〈χj|χk〉,

or j = 2 − N.
The coherent-state expansions, introduced by Eq. (10), allow

or the analytic implementation of step [1] as follows:

′
l(x; t + τ) =

n∑
j=1

c
(l)
j 〈x|χ̃j〉, (12)

here

x|χ̃j〉 ≡
N∏
k=1

Aj(k)
√

m

m+ iτγj(k)

exp

(
(pj(k)/γj(k))−i[xj(k)−x(k)]2

(2/γj(k)) + (2iτ/m)
− pj(k)

2γj(k)

)
.

(13)

tep [II] is efficiently implemented by generating matching pur-
uit coherent-state expansions of ϕ′′

l (x; t + τ), as described in
ection 2.2. Here, we use the definition of M, introduced by Eq.
8), in addition to the coherent-state expansions of ϕ′

l(x; t +
), introduced by Eq. (12) and the specific functional form
f the model potential energy surfaces introduced in Section
.3.

.2. Matching pursuit expansions

The matching pursuit coherent state expansions, representing
arget states Ψ t (wave-functions), are obtained by successive

rthogonal projections onto elements of an over-complete basis
et as follows: The first step requires selecting the basis element
1〉 that has maximum overlap with the target state |Ψ t〉 (i.e., the
lement that is resonant with the most prominent structure in

d

t
H
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Ψ t)). The first order expansion is thus defined as follows:

ψt〉 = c1|1〉 + |ε1〉, (14)

here c1 ≡ 〈1|Ψ t). Note that the residual vector |ε1〉 is orthogo-
al to |1〉. Therefore, ||Ψ t|| > ||ε1||, by virtue of the definition of
1. The next step involves the sub-decomposition of the residual
ector |ε1〉 by projecting it along the direction of its best match
2〉 as follows:

ε1〉 = c2|2〉 + |ε2〉, (15)

here c2 ≡ 〈2|ε1). Note that, since |ε1〉 is orthogonal to |2〉, the
orm of |ε2〉 is smaller than the norm of |ε1〉. This procedure is
epeated each time on the resulting residue.

After n successive orthogonal projections, the norm of the
esidual vector |εn〉 is smaller than a desired precision ε. There-
ore, the algorithm maintains norm conservation within a desired
recision:

|εn|| =
√√√√1 −

n∑
j=1

|cj|2 < ε, (16)

ust as in a linear orthogonal decomposition. The resulting
xpansion is

x|ψt〉 ≈
n∑
j=1

cj〈x|j〉, (17)

here the coefficients cj are recursively defined as follows:

j = 〈j|ψt〉 −
j−1∑
k=1

ck〈j|k〉. (18)

discussion of convergence with respect to the number of basis
tates and the numerical effort required in typical MP/SOFT
imulations has been previously reported [1,84,87]. Matching
ursuit coherent-state expansions are obtained by successively
electing the basis functions according to a gradient-based opti-
ization technique [88]. A parallel implementation under the
essage passing interface (MPI) environment [107] can linearly

ccelerate the search for a satisfactory local minimum, with the
umber of processing elements. Starting from an initial trial
oherent state |χ〉, the parameters xj(k), pj(k) and γ j(k) are opti-
ized so that they locally maximize the overlap with the target

tate. Initial guess parameters γ j(k), xj(k) and pj(k) are chosen
s defined by the basis elements of the previous wave-packet
epresentation (or initial state).

.3. Model Hamiltonian

A detailed description of the model Hamiltonian, imple-
ented for the reported MP/SOFT simulations, has been

reviously reported [38,39,108–110]. Here, the model is

escribed only briefly.

The model involves an empirical 2-state 25-mode Hamil-
onian H = HM + HB, where HM is a 2-state 2-mode model
amiltonian that explicitly accounts for the collective torsional
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oordinate θ and its coupling to the delocalized stretching mode
f the polyene chain xstr, as follows:

M =
∑

n,m=1,2

|n〉(Tδnm + Vnm)〈m|, (19)

here

= − 1

2m

∂2

∂θ2 − ω

2

∂2

∂x2
str
, (20)

nn = VR
n (θ) + 1

2ωx
2
str + δ2nkxstr, (21)

12 = V21 = λxstr, (22)

R
1 = 1

2W1(1 − cos(θ)), (23)

R
2 = E2 − 1

2W2(1 − cos(θ)), (24)

ssuming dimensionless coordinates and atomic units (with
= 1). The parameters of the model are defined as follows:
−1 = 4.84 × 10−4 eV, E2 = 2.48 eV, W1 = 3.6 eV, W2 = 1.09 eV,
= 0.19 eV, κ = 0.1 eV and λ= 0.19 eV, in order to reproduce the

hodopsin electronic excitation energies as well as the spectro-
copic energy shift and energy storage due to the isomerization
f the retinyl chromophore in rhodopsin. Therefore, the model
mplicitly considers the effect of the protein environment in the
ctual values of the parameters. Fig. 2 shows the resulting adi-
batic potential energy surfaces obtained by diagonalization of
nm.

The condon-active vibrational modes zj are included as a

armonic ansatz:

B =
∑
n=1,2

|n〉〈n|
∑
j

1

2
ωj(p

2
j + z2

j ) + δn2αjzj, (25)

ig. 2. Adiabatic potential energy surfaces for the ground (S0) and excited (S1)
lectronic states, as a function of the isomerization dihedral angle θ(C11–C12)
nd the delocalized stretching mode xstr of the polyene chain. The vertical arrow
ndicates the preparation of the initial states by S0 → S1 photoexcitation with
isible-light (λ= 500 nm).
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ith frequenciesωj and excited-state gradients αj parameterized
o reproduce the experimental resonance Raman excitations of
hodopsin [42]. In addition to reproducing all of these experi-
ental data by construction, the model Hamiltonian properly

escribes the isomerization reaction rate and efficiency (i.e.,
he quantum product yield) [38], as correlated to femtosecond
pectroscopic signals [10–12].

. Results

This section demonstrates the capabilities of the generalized
P/SOFT method, introduced in Section 2, as applied to the

escription of the 11-cis/all-trans isomerization of the retinyl
hromophore in rhodopsin. Benchmark calculations showing the
ccuracy and efficiency of the generalized MP/SOFT method, as
ompared to numerically exact grid-based computations, have
lready been reported [1]. The isomerization involves ultra-
ast nonadiabatic dynamics at the S0/S1 conical intersection of
otential energy surfaces.

Fig. 3 shows the evolution of the time dependent wave-packet,
educed to the space of reaction coordinates θ and xstr as follows:

t(θ, xstr) =
∫

dz|ψ∗
t (θ, xstr, z)|2, (26)

nd represented by solid contour lines. Snapshots at various
imes, during the nonadiabatic dynamics following the S0 → S1
hotoexcitation of the retinyl chromophore, illustrate the process
f excited-state relaxation at the detailed molecular level. Ini-
ially, the wave-packet spreads in the S1 state and approaches
he S1/S0 conical intersection of potential energy surfaces,
t θ =π/2 rad and xstr = 0 a.u. within 100 fs. During this first
ncounter with the conical intersection, there is population trans-
er from the S1 electronic state to highly excited rovibrational
tates associated with the trans configuration of the retinyl
hromophore in the S0 electronic state. This scattering process
nduces vibrational energy redistribution, at the conical inter-
ection, exciting both the torsional motion about the C11–C12
ond and the delocalized stretching mode of the polyene chain
or the chromophore in both the S0 and S1 states (see snap-
hot at t = 150 fs). The subsequent relaxation dynamics involves
round-state relaxation into highly excited vibronic states of the
is configuration as well as further population transfer from the
1 state into the trans configuration of the S0 state.

Fig. 4 shows the evolution of the time-dependent
opulation of the retinyl chromophore in the 11-cis S1 adi-
batic state, PS1

cis(t) = 〈ΨS1 (t)|h(θ)|ΨS1 |(t)〉, where |ΨS1 (t)〉 =
S1|Ψ (t)〉|S1〉, and the population of the all-trans S0 adia-
atic state, PS0

trans(t), obtained analogously during the early time
ynamics after photoexcitation of the system. Here, Ψ (t) is
he 2-state time-dependent wave-packet introduced by Eq. (2)
nd h(θ) is a step-function of the dihedral angle θ about the
11–C12 bond, defined as follows: h(θ) = 1, when |θ| <π/2 and
(θ) = 0, otherwise. MP/SOFT results (solid lines) are com-

ared to the corresponding calculations obtained according
o the mixed quantum-classical time-dependent self-consistent
eld (TDSCF) approach [63] (dashed lines), implemented as
escribed in Ref. [39].
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ig. 3. Evolution of the time-dependent wave-packet ρt(θ, xstr) =
∫

dz|Ψ∗
t (θ, x

imes during the nonadiabatic dynamics following S0 → S1 photoexcitation of t
paced by 0.1 units in the 0.1–0.7 range of amplitudes. The S0 and S1 states are
Fig. 4 shows that the product all-trans rhodopsin is formed
y 200 fs, after photoexcitation of the chromophore, in good
greement with spectroscopic data [10–12], and previous sim-
lations [38,39]. The underlying mechanism, during this early

ig. 4. Time-dependent populations of the 11-cis and all-trans configurations
s a function of time, during the early time relaxation dynamics.
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ime, involves direct nonadiabatic transfer from cis configura-
ions in the S1 state to trans configurations in the S0 state, as
llustrated in Fig. 3. At later times, there is partial reverse reaction
eforming cis configurations in highly excited vibronic states.

The quantitative comparison of time-dependent populations
omputed at the MP/SOFT and TDSCF levels of theory,
artially validates the approximate mixed quantum-classical
ethodology as applied to the description of 11-cis/all-trans iso-
erization of rhodopsin provided by the 2-state 25-mode model
amiltonian.

. Concluding remarks

In this paper we have over-viewed the MP/SOFT method
or simulations of nonadiabatic quantum dynamics in multi-
imensional (polyatomic) systems. We have shown that the
P/SOFT propagation scheme recursively applies the time-
volution operator, as defined by the Trotter expansion to second
rder accuracy, in dynamically adaptive coherent-state expan-
ions generated according to the matching-pursuit algorithm.
uch representations are particularly suitable for applications
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o high-dimensional problems since they allow for an analytic
mplementation of the Trotter expansion, bypassing the expo-
ential scaling problem associated with the usual fast-Fourier
ransform in the standard grid-based SOFT approach.

We have shown how to apply the MP/SOFT method to the
escription of the 11-cis/all-trans photoisomerization of the
etinyl chromophore in rhodopsin, as modeled by a 2-state
5-dimensional wave-packet evolving according to an empir-
cal Hamiltonian with frequencies and excited-state gradients
arameterized to reproduce the observed resonance Raman exci-
ations of rhodopsin.

The reported results provided a characterization of the reac-
ion time and the detailed mechanism of isomerization as
etermined by the nonadiabatic dynamics at the S0/S1 conical
ntersection of potential energy surfaces. Direct comparisons
f results for time-dependent reactant (product) populations
omputed according to the MP/SOFT methodology and the
pproximate TDSCF method have assessed the validity of a
ixed quantum-classical approach as applied to the description

f complex (nonintegrable) quantum dynamics in the multi-
imensional model systems defined by the 2-state 25-model
amiltonian.
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